Child pages
  • General information

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

802.1X defines how EAP messages are transmitted over an IEEE 802 network (e.g. ethernet, wifi). "@@@1"

RADIUS is a protocol to exchange information between an authenticator (also known as NAS (Network Access Server)) (see above picture) and an Authentication server. Each packet has a packet type, and contains multiple ValueName-Value attributes with relevant information as may be the case. By default, it operates on UDP port 1812. A well known RADIUS server software is called FreeRADIUS. "@@@1"

In the above example, a wifi access point is providing access to the 192.168.254.0/24 network. When a device (called a supplicant) attempts to connect to the wifi network, the wireless access point starts an EAP conversation with the supplicant over 802.1X, requesting it to supply credentials. The access point then connects to the authentication server (which, in the example above is also part of the 192.168.254.0/24 network) and sends the EAP response it received from the supplicant over the RADIUS protocol in a packet of type Access-Request as one of the attributes. The authentication server may wish to request the supplicant for more information, it may thus answer the wifi access point with a RADIUS packet of type Access-Challenge containing an EAP message to be forwarded to the supplicant. The wifi access point facilitates this conversation between authentication server and supplicant until the authentication server sends a RADIUS packet to the wifi access point which is of either type Access-Accept or Access-Reject. "@@@3"

EAP itself is an encapsulation protocol, inside it a variety of different protocols can be run to perform authentication. An authentication protocol can be encapsulated directly inside the EAP tunnel or an encryption protocol can be, inside which then, (at least in the cases of EAP-PEAP and EAP-TTLS) eventually another instance of the EAP protocol is encapsulated, inside which, finally, the actual authentication protocol is encapsulated. According to the comment in the mods-available/eap config file at the beginning of the 'ttls' section, the hierarchy with EAP-TTLS is RADIUS → EAP → TLS → Diameter (protocol comparable in scope to RADIUS) → again EAP → the actual protocol used for authentication). EAP-PEAP is a comparable encryption protocol, it is possible to use either EAP-TTLS or EAP-PEAP. "@@@1" An example of an authentication protocol that can be used for the actual authentication is MSCHAPv2.

In the case an encrypted tunnel is used, the conversation outside the encryption encrypted tunnel is called the outer tunnel. The conversation within the encrypted tunnel is called the "Inner Tunnel". At the time of setting up the encrypted tunnel, the authentication server presents a certificate identifying itself which the supplicant may (and should) choose to verify before sending its login credentials to the server. "@@@1"

In the case of an Access-Accept, the NAS wifi access point now allows the supplicant to join the network, or, in the case of Access-Reject, will not. Once the NAS has granted access, for 802.1X/RADIUS/authentication server, the job is done, and the supplicant becomes part of the 192.168.254.0/24 network's broadcast domain. The authentication server can specify attributes in the replying packet to give the NAS additional instructions, for example, it might request the NAS to place the newly connected supplicant in a specific VLAN, or it might specify for how long the supplicant is allowed to remain connected. The authentication server is able to log that the user connected along with information from attributes the NAS might have sent, generally this includes the MAC address of the supplicant, MAC address of the NAS, username (if authentication was done by username/password) and more depending on the NAS model. The supplicant can now initiate a DHCP request for an IP address or any other action as may be appropriate.

EAP and RADIUS have support for a great variety of features or different methods that can be encapsulated there-in to perform authentication (e.g. it is possible to use different protocols that authenticate the user using a username and password, or using client certificates, or even SIM cards), but it is still up to the supplicant, NAS and authentication server implementations to choose which ones they support or not (even different NASes have been seen to send MAC addresses in different format, e.g. TP-Link Archer C20 sends 01-23-45-67-89-AB, while TP-Link TD-W8968 sends 0123456789ab. TP-Link TL-WR740N, in the case of the NAS MAC address, sends 01-23-45-67-89-AB:SSID, where SSID is the configured wireless SSID). "@@@1"

 

FreeRADIUS configuration files

...