
1.
2.
3.

Gitolite (git administration)

Introduction
Pre-requisites

Server
Client

Installation
Server
Client

Configuration and administration
Gitolite
Set the "remote" of an "orphan", local git repo, to a new repo created with gitolite

References

Introduction
Gitolite is an access control layer on top of git. Here are the features that most people see:

Use a single unix user ("real" user) on the server.
Provide access to many gitolite users:

they are not "real" users,
they do not get shell access.

Control access to many git repositories:
read access controlled at the repo level,
write access controlled at the branch/tag/file/directory level, including who can rewind, create, and delete branches/tags.

Can be installed without root access, assuming git and perl are already installed.
Authentication is most commonly done using sshd, but you can also use if you prefer (this may require root access).http

Pre-requisites

Server

Any Unix system with a POSIX compatible "sh" and a file system.sane
Git version 1.6.6 or later. (Git 1.7.8 or later if you want to run the test suite).
Perl 5.8.8 or later.
Openssh (almost any version). Optional if you're using .smart http
A dedicated Unix user for the hosting user, usually "git" but it can be any user, even your own normal one. (If you're using an RPM/DEB the install
probably created one called "gitolite").

Also see the page for more on what gitolite expects on the server side.WARNINGS

TODO: which packages to install for Ubuntu 12.04 and 14.04 and Debian 6, 7 and 8?

Client

The gitolite client is an ordinary git client, documented at Git user manual

Installation

Server

Gitolite has only one server side "command" now, much like git itself. This command is . You don't need to place it anywhere special; worst gitolite
case you run it with the full path.

"Installation" consists of the following options:

Keep the sources anywhere and use the full path to run the command.gitolite
Keep the sources anywhere and symlink the program to some directory on your .just gitolite $PATH
Copy the sources somewhere and use that path to run the command.gitolite

Option 2 is the best for general use.

There is a program called 'install' that helps you do these easily. Assuming your cloned the repo like this:

git clone git://github.com/sitaramc/gitolite

you can run the 'install' command in 3 different ways:

http://sitaramc.github.com/gitolite/http.html
http://sitaramc.github.com/gitolite/http.html
http://sitaramc.github.com/gitolite/WARNINGS.html
http://wiki.bluelightav.org/display/BLUE/Git+user+manual

option 1 gitolite/install # option 2 gitolite/install -ln # defaults to $HOME/bin (which is assumed to
exist) # ** or ** # or use a specific directory (please supply full path): gitolite/install -ln /usr/local
/bin # option 3 # (again, please supply a full path) gitolite/install -to /usr/local/gitolite/bin

Creating a symlink doesn't need a separate program but 'install' also runs to create a VERSION file, which, trust me, is important!git describe

Installing the software gets you ready to use it, but the first "use" of it is always the "setup" command.

The first time you run it, you need to have a public key file (usually from the admin's workstation) ready. If the main gitolite admin's username is "alice", this
file should be named "alice.pub". Then, as the , run:hosting user

gitolite setup -pk alice.pub

If that command completes without any warnings, you should be done. If it had a warning, you probably supplied a key which already has shell access to
the server. That won't work.

Normally, gitolite is hosted on a user that no one accesses directly -- you log on to the server using some other userid, and then su
. In this scenario, there no key being used for shell access, so there is no conflict.- git is

An alternative method is to use two different keys, and a to distinguish the two.host alias

common errors has some links to background information on this issue.

The 'setup' command has other uses, so you will be running it at other times after the install as well:

To setup the update hook when you move repos to gitolite. This also applies if someone has been fiddling with the hooks on some repos existing
and you want to put them all right quickly.
To replace a .lost admin key
To setup gitolite for http mode (run 'gitolite setup -h' for more info).

When in doubt, run 'gitolite setup' anyway; it doesn't do any harm, though it may take a minute or so if you have more than a few thousand repos!

Client

The gitolite client is an ordinary git client, documented at Git user manual

Configuration and administration

Gitolite

to administer gitolite:

git clone git:gitolite-admin

The directory tree is self explanatory

To update commit:

git commit -a #tell git about the changes you want to incorporate
git push # send it to the server

Set the "remote" of an "orphan", local git repo, to a new repo created with gitolite

This is a usual use case: a repo has been created on a development machine, before the repo created using gitolite on the server.

Assume you have an existing project you want to add in your new repository.

cd foo
git init
git add --all
git commit -m "Initial commit"

http://sitaramc.github.com/gitolite/install.html#nnc
http://sitaramc.github.com/gitolite/sts.html#ssh-ha
http://sitaramc.github.com/gitolite/emergencies.html#ce
http://sitaramc.github.com/gitolite/rare.html#existing
http://sitaramc.github.com/gitolite/emergencies.html#lost-key
http://wiki.bluelightav.org/display/BLUE/Git+user+manual

Link your local repository with your remote repository then push the local content to your remote repository.

git remote add origin git-bluelight:foo
git push --set-upstream origin master

References
TBC

	Gitolite (git administration)

