
Xen scripts

Introduction
How the scripts are called
Structure of the scripts
Developing the scripts

Run-time values
Environment and arguments display
Logging
Tracing
Why doesn't the script run?

Functions

Introduction
This page was started to encapsulate the results of reverse-engineering the as-installed Xen 4.1 /etc/xen/scripts/* scripts on Debian 7 Wheezy.

It assumes the xl toolkit is being used.

This page is published early – before extensive internal usage – because no similar information was found on the 'net.

How the scripts are called
Normally the scripts are called by xl (and thence libxenlight?) because they are named in /etc/xen/<DomU name>.cfg.

Structure of the scripts
The scripts are written in bash.

The scripts use a lot of common components: bash scripts which are sourced mostly to define functions. For example, here is the start of the vif-bridge
call tree.

 vif-bridge
 |
 +-- . /etc/xen/scripts/vif-common.sh
 |
 +-- . /etc/xen/scripts/xen-hotplug-common.sh
 | |
 | +-- . /etc/xen/scripts/hotplugpath.sh
 | |
 | +-- . /etc/xen/scripts/logging.sh
 | |
 | +-- . /etc/xen/scripts/xen-script-common.sh
 | |
 | +-- . /etc/xen/scripts/locking.sh
 |
 +-- . xen-network-common.sh
 |
 +-- findCommand
 |
 +-- evalVariables
 |

Developing the scripts

Run-time values

From vif-common.sh comments (Xen 4.1 version. The "given by the Xend global configuration" is obsolete?):

Parameters may be read from the environment, the command line arguments, and the store, with overriding in that order. The
environment is given by the driver, the command line is given by the Xend global configuration, and store details are given by the
per-domain or per-device configuration.

Environment and arguments display

During development it may be convenient to run scripts other than by the normal mechanism, perhaps to run at a command prompt. In that case the
environment must be created and normal arguments passed. A script's environment and arguments can be found by inserting this code at the beginning
of a script:

log_fn=/tmp/${0##*/}.$$
exec >>$log_fn 2>&1
echo "env output: $(env)"
i=0
for arg in "$@"
do
 echo "Arg $((i++)): '$arg'"
done
unset i arg

 That scrippet leaves stdout and stderr redirected to the log file. Usually that is convenient. In case it is not, the original redirections can be saved and
restored:

exec 3>&1; exec 4>&2 # Save current redirections
log_fn=/tmp/${0##*/}.$$
exec >>$log_fn 2>&1
echo "env output: $(env)"
i=0
for arg in "$@"
do
 echo "Arg $((i++)): '$arg'"
done
unset i arg
exec >&3; exec 2>&4 # Restore original redirections
exec 3>&-; exec 4>&- # Close temporary file descriptors

Logging

Function log is available soon after a script initialises. Normally it writes to /var/log/syslog.

log <level> <message>

<level> can be debug, info, warn, error or any of the other levels documented on the logger man page.

<message> can be multiple words.

Tracing

Normally bash tracing could be enabled by adding +x to the shebang line. This did not work on Debian 7 Wheezy with Xen 4.1.

Using in the scripts did work but stderr is sometimes discarded so it may be necessary to set up stderr redirection to log as described in the"set -x
Environment and arguments display" section above.

Why doesn't the script run?

Maybe it did run but failed with a syntax error which was not reported. Running it at a command prompt would check the syntax.

Xen may require the script's full path in the configuration file.

Is the script executable?

Functions

Name Functionality Defined in

_setup_bridge_po
rt

 xen-network-
common.sh

_xenstore_write xenstore-write "$@" xen-hotplug-
common.sh

add_to_bridge If /sys/class/net/$bridge/brif/$dev does not exist, run
brctl addif $bridge $dev

xen-network-
common.sh

canonicalise_mode block-
common.sh

create_bridge xen-network-
common.sh

device_major_min
or

 block-
common.sh

do_or_die Run args as command. If it returns non-0 rc, call fatal xen-hotplug-
common.sh

do_without_error Run args as command, discarding stderr. If it returns non-0 rc, log and continue. xen-hotplug-
common.sh

dom0_ip Print the IP address of the interface in dom0 through which we are routing. This is the IP address on the interface
specified as "netdev" as a parameter to these scripts, or eth0 by default.

vif-common.
sh

ebusy block-
common.sh

evalVariables If any args contain a character from ">=1", eval it xen-script-
common.sh

fatal Log error and exit xen-hotplug-
common.sh

findCommand If any args do not contain "=" set command to it and return xen-script-
common.sh

find_dhcpd_arg_fi
le

 xen-network-
common.sh

find_dhcpd_conf_
file

 xen-network-
common.sh

find_dhcpd_init_file xen-network-
common.sh

first_file xen-network-
common.sh

frob_iptable vif-common.
sh

handle_iptable If iptables working, run frob_iptable function with various args vif-common.
sh

ifdown Only defined if there is no ifup (sic) command, when it is a dummy and always returns non-zero xen-network-
common.sh

ifup Only defined if there is no ifup command, when it is a dummy and always returns non-zero xen-network-
common.sh

ip_of Print the IP address currently in use at the given interface vif-common.
sh

log Log by ... or, if that fails, to stderrlogger -p daemon.<level> logging.sh

preiftransfer Dummy; always returns 0 xen-network-
common.sh

same_vm block-
common.sh

setup_physical_br
idge_port

_setup_bridge_port $1 0 xen-network-
common.sh

setup_virtual_brid
ge_port

_setup_bridge_port $1 1 xen-network-
common.sh

sigerr ERR trap handler. Calls fatal xen-hotplug-
common.sh

success Tell DevController that backend is "connected" xen-hotplug-
common.sh

vtpm_add_and_a
ctivate

 vtpm-
common.sh

vtpm_create vtpm-
common.sh

vtpm_create_inst
ance

 vtpm-
common.sh

vtpm_delete vtpm-
common.sh

vtpm_delete_insta
nce

 vtpm-
common.sh

vtpm_domid_from
_name

 vtpm-
common.sh

vtpm_get_create_
reason

 vtpm-
common.sh

vtpm_isLocalAddr
ess

 vtpm-
common.sh

vtpm_migrate vtpm-
common.sh

vtpm_migrate_loc
al

 vtpm-
common.sh

vtpm_migrate_rec
over

 vtpm-
common.sh

vtpm_migration_s
tep

 vtpm-
common.sh

vtpm_recover vtpm-
common.sh

vtpm_remove_ins
tance

 vtpm-
common.sh

vtpm_resume vtpm-
common.sh

vtpm_setup vtpm-
common.sh

vtpm_start vtpm-
common.sh

vtpm_suspend vtpm-
common.sh

vtpm_uuid_by_do
mid

 vtpm-
common.sh

vtpm_uuid_from_
vmname

 vtpm-
common.sh

vtpmdb_add_inst
ance

 vtpm-
common.sh

vtpmdb_find_insta
nce

 vtpm-
common.sh

vtpmdb_get_free_
instancenum

 vtpm-
common.sh

vtpmdb_is_free_i
nstancenum

 vtpm-
common.sh

vtpmdb_remove_
entry

 vtpm-
common.sh

vtpmdb_validate_
entry

 vtpm-
common.sh

write_dev block-
common.sh

xenstore_read xenstore-read "$@" xen-hotplug-
common.sh

xenstore_read_de
fault

xenstore-read "$1" || echo "$2" xen-hotplug-
common.sh

xenstore_write _xenstore_write "$@" || fatal xen-hotplug-
common.sh

	Xen scripts

