
StressLinux

http://www.stresslinux.org/sl/

 is a lightweight Linux distribution designed to test a computer's hardware by running the components at high load while monitoring their health.Stresslinux

It makes use of some utitlities such as stress, cpuburn, hddtemp, lm_sensors, etc. It is dedicated to users who want to test their system(s) entirely on high 
load and monitor the health of these systems.

StressLinux runs from external bootable media: CD, USB stick, PXE boot, or you can run the VMWare image. There are good instructions for creating your 
chosen boot medium.

When you boot up, you have the option to allow sl-wizard to probe your system for sensors and then load the appropriate drivers

You can re-run this anytime after boot by deleting /tmp/sensors and then running the sl-wizard.sh script as root, like this:

stress@stresslinux:~>;sudo rm /tmp/sensors
stress@stresslinux:~>;sudo sl-wizard.sh

This is not an ordinary stripped-down Linux. It was built with  , and is based on OpenSUSE. SUSE Studio

 StressLinux uses Busybox in place of the usual coreutils, fileutils, and other standard Linux commands. Busybox is a single stripped-down binary 
containing several dozen commands, and it uses the ash shell, so you may find that some of your favorite options are missing. The Busybox command 
reference should help you.

 Stresslinux uses the Fn keys in an interesting way. There are 6 ordinary ttys on F1-F6, and it boots to tty1 on F1. The rest are normal login ttys. On 
US keyboards you can switch between these with ALT+Fn. (STRG+Fn on German keyboards, which is the same as CTRL+Fn.) F10 displays eth0 
throughput (see above), F11 shows hard disk temperatures, and F12 displays lm-sensors readings.

What to Do : The Main Task:

Now that Stresslinux is booted up and you have gazed upon your eth0 and sensor outputs, what's next? Let's spend some time with the stress command,
because that is a good general-purpose workload generator. It operates by siccing a bunch of hogs on your system. This simple invocation puts a light 
load on the CPU, I/O, memory, and hard drive:

stress --cpu 1000 --io 4 --vm 2 --hdd 4 --timeout 15m --verbose

When it finishes with "successful run completed" that means there were no errors. If it did detect errors, it would either try to tell you what they were, or tell 
you to examine the syslog. Let's walk through this so we know what it's doing.

--cpu 1000 tells it to fork 1000 processes. Each process calculates the square root of a random number (by calling the   and   functions) in a sqrt() rand
loop that stops at the end of your timeout, or when you stop it with CTRL+c. This is similar, a way to keep the CPU constantly busy. 1000 processes surely 
put some load !!!

--io 4 forks 4 processes that call the   function in a loop.   flushes any data buffered in memory to disk. Most Linux filesystems use sync() sync()
delayed allocation; that is, data are held in memory for a period of time before being written to disk. This speeds up performance because disk I/O is 
slower than RAM. Running this one by itself and trying out different values will give you an idea of your I/O performance.

--vm 2 thrashes your RAM by forking 2 processes to allocate and release memory. (Looping   and  .) malloc() free() You can control the load on your 
memory with the --vm-bytes option.

stress --vm 2 --vm-bytes 3G --vm-hang --timeout 60s

Be careful with this because thrashing your memory can make your system hang. The vm option allocates and releases memory; the vm-hang simulates 
low memory conditions by having each hog process go to sleep, rather than releasing memory. This above example hogs 3 gigabytes of memory:

--hdd 4 pummels your hard drive with writes, by calling the   function in a loop. write The default file size is 1GB, and you can specify any size with the -
-hdd-bytes option, for example --hdd-bytes 5G writes a 5 gigabyte file.

stress --hdd 1 --hdd-bytes 5G --timeout 5m

 

--timeout 30s tells   to stop after 30 seconds. Or whatever time you want, of course, using s,m,h,d,y (seconds, minutes, hours, days, years). stress
Always set a timeout, because this is your protection from the system locking up and becoming inaccessible.   runs in userspace and can't cause stress
any damage, but it would be sad to have to reboot to stop it.

http://www.stresslinux.org/sl/
http://susestudio.com/
http://www.busybox.net/downloads/BusyBox.html


--verbose makes it spit out many lines telling what it is doing.

stress is tidy and cleans up after itself, so you shouldn't have to worry about leftover hogs running amok. The documentation on stress isn't exactly 
lavish, and the most complete help is in info stress.


	StressLinux

