
Multiple devices (md, software RAID)

Introduction
md device file names: /dev/md<n> and /dev/md/<n>)

RAID 1
Creation

EFI System partition (ESP)
Removal
Replacing an underlying device

DOS partition table (a.k.a MBR)
GUID partition table (GPT)
All partition table types

Disabling an underlying device
Remove an underlying device (md device not in use)

Booting from an md RAID 1 device
Routine maintenance

checkarray
Re-populating /etc/mdadm/mdadm.conf

mdadm syntax table
Troubleshooting

Degraded array report
initrd fails to assemble md devices
LVM PVs on missing md devices
Messages

auto-read-only
/etc/mdadm/mdadm.conf defines no arrays
nvidia: wrong # of devices in RAID set "nvidia_gbbagfad"
RebuildFinished event detected on md device *, component device mismatches found: * (on raid level *)

References

Introduction
md is a Linux kernel facility with user space supporting tools and files.

md was originally "mirror disk".  It was renamed "multiple devices" when functionality was extended to more than mirrored disks.  Functionality now 
includes non-mirrored RAID and multipathing.  At the time of writing, Blue Light had only used md to create RAID 1 devices.

md assembles multiple devices into a single virtual device.

The multiple devices are variously called "underlying devices" and "RAID devices" in the documentation.  On this WIKI page they are always "underlying 
devices".

md device file names: /dev/md<n> and /dev/md/<n>)

Originally md device files were /dev/md[[:digit:]]+.  Now /dev/md [[:digit:]]+ is preferred but does not work on at least Ubuntu 12.04 Precise./

 Andrey reports that having auto-generated /dev/md/* names in mdadm.conf breaks GRUB or initramfs in recent (Trusty and Jessie) systems.  TODO: 
clarify (including adding related bug references) and determine whether our policy should be to defend against such auto-generated names or whether this 
is a transient situation which will be bug-passed.

RAID 1

Creation

Create the block devices to be used as underlying devices.  Typically these are HDD partitions but any block devices can be used.  In the following 
example, /dev/sdb1 /dev/sdc1 are used.

mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sdb1 /dev/sdc1

In case only one underlying device is available (for example during system build or recovery) the same command can be used with the missing underlying 
devce name replaced by "missing".  For example:

mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sdb1 missing

If the md device provides the file system including /boot or is an LVM PV (physical volume) then /etc/mdadm/mdadm.conf must be re-populated as shown  
below and the initramfs re-generated by:

update-initramfs -u

EFI System partition (ESP)



EFI only recognizes FAT16/FAT32, so according to most sources, RAID 1 is not possible. However, that is not true: RAID 1 possible as long as is   
metadata version 0.9 or 1.0 is used. The reason it works is because metadata 0.9 or 1.0 is stored at the of the partition, which doesn't interfere with end   
EFI, whereas metadata 1.2 does because it's stored at the beginning.

To convert the EFI System partition device to md RAID ...

Back up the current ESP files and unmount the file system:
    cd /boot && tar -cvzf efi.tar efi
    umount /boot/efi

Create a RAID array:
    mdadm --create --metadata=1.0 --verbose /dev/md1 --level=1 --raid-devices=2 /dev/sda1 missing

 "missing" allows you to specify that a second device isn't present .yet   

Format the partition (you might need to install package first to get the command):dosfsutils   
    mkfs.vfat /dev/md1

Update /etc/fstab's /boot/efi line with the new file system's UUID:
    blkid | grep md1
... and edit /etc/fstab, inserting the UUID into the /boot/efi line.

Restore the ESP files:
    cd /boot && tar -xvzf efi.tar

Removal

For example:

mdadm --manage /dev/md  --fail /dev/sd2 [ab]1 
mdadm --manage /dev/md  --remove /dev/sd2 [ab]1 
mdadm --manage /dev/md  --stop 2
mdadm --zero-superblock /dev/sd[ab]1

Replacing an underlying device

Typically this is done when an HDD has failed.

DOS partition table (a.k.a MBR)

In case the replacement HDD is the same size and has the same partitions as a working HDD, the partitions can be created and GRUB installed in a single 
command.  Assuming sda is the working HDD, partitioned with an MBR and sdb the replacement:

dd if=/dev/sda of=/dev/sdb bs=512 count=1

The procedure continues at "All partition table types" below.

GUID partition table (GPT)

Create the new underlying device by partitioning.

All partition table types

Ensure the array is active.  In case it is inactive use mdadm --manage --run to activate it.  TODO: move the last sentence to a new section on activation.

Regardless of how the underlying block device was created, it can now be added to the md device:

mdadm --manage --add /dev/md/<md device index> /dev/<whatever>

For example:

mdadm --manage --add /dev/md/  /dev/0 sdb1

Disabling an underlying device

This is intended to:

prevent damage in case the underlying device recovers and fails again
stop spurious error messages
prepare for replacement

http://wiki.bluelightav.org/display/BLUE/HDD+partitions#HDDpartitions-DOSpartitiontable%28a.k.aMBR%29
http://wiki.bluelightav.org/display/BLUE/HDD+partitions#HDDpartitions-GUIDpartitiontable%28GPT%29


For example:

# mdadm --manage --fail /dev/md  /dev/sd1 b2
mdadm: set /dev/sdb2 faulty in /dev/md1
# mdadm --manage --remove /dev/md  /dev/sd1 b2
mdadm: hot removed /dev/sdb2 from /dev/md1
# mdadm --zero-superblock /dev/sdb2
mdadm: Unrecognised md component device - /dev/sdb2
[normally works; the example above was because sdb had failed]
# echo "1" > /sys/block/sd /device/deleteb

Remove an underlying device (md device not in use)

Removing /dev/md1 as an example ...

Find which block devices the md device is built on

mdadm --detail /dev/md1

Stop the device:

mdadm --stop /dev/md1

For each block device the device is built on (here /dev/sda2):

mdadm --zero-superblock /dev/sda2

Booting from an md RAID 1 device
 When the root file system is on a RAID device, either directly or because it is an LV based on a RAID device for PV, to prevent boot hanging when the 

RAID is degraded:

Before Jessie (TODO: Trusty same?): use kenel parameter bootdegraded=true
Jessie (TODO: Trusty same?): create /etc/initramfs-tools/conf.d/mdadm containing "BOOT_DEGRADED=true" and copy /usr/share/initramfs-tools
/scripts/local-top/mdadm to /etc/initramfs-tools/scripts/local-top and patch it as described in https://jira.bluelightav.org/browse/FINANCESRV-368?

 then rebuild the initramfs withfocusedCommentId=53091
    update-initramfs -u

When a RAID 1 md device is used for /boot, GRUB should be installed to both underlying devices, not to the md device.  This is done using

dpkg-reconfigure grub-pc

GRUB2 can be configured to include md support so can assemble the /boot md before loading initrd (or the kernel directly) but Blue Light accepts what the 
distro delivers.

Routine maintenance

checkarray

At least Debian 7 Wheezy has /etc/cron.d/mdadm which runs

/usr/share/mdadm/checkarray --cron --all --idle --quiet

on the 14th of each month at 02:19.

The command only checks the md arrays, it does not fix them.  For each array /dev/md/<n>, it results in messages in syslog like:

RebuildStart event detected on md device ...
Rebuild(20|40|60|80) event detected on md device ...
RebuildFinished event detected on md device ...

Despite "Rebuild" it is actually a check.

For small arrays the "  ..." progress indicators are not generated.  We have seen some of those messages missing.Rebuild(20|40|60|80)

Sometimes mismatches are reported.  According to , that is a problem for RAID 5 but not for https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=518834#38
RAID 1.  Presumably it is a problem for RAID 6 too.

Re-populating /etc/mdadm/mdadm.conf

https://jira.bluelightav.org/browse/FINANCESRV-368?focusedCommentId=53091
https://jira.bluelightav.org/browse/FINANCESRV-368?focusedCommentId=53091
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=518834#38


1.  

/etc/mdadm/mdadm.conf is generated when md arrays are set up changes may require updating it by:

/usr/share/mdadm/mkconf > /etc/mdadm/mdadm.conf

It is prudent to rebuild the initramfs after changing mdadm.conf:

update-initramfs -u

mdadm syntax table
In case mdadm --help and the mdam man page are not what is needed.

The man page says the general syntax is
    mdadm [mode] [options] <component-devices>

But that does not agree with mdadm --help output which lists ...
    mdadm mode device options...
    mdadm mode [option ...] devices
... and notes that the --manage mode can be omitted.

 BusyBox mdam commands are more consistent than the full commands; options always come before devices.

 

Mode
device
before

options
Options Notes

--assemble Y bitmap, uuid, super-minor, name, config, scan, run, force, update, no-degraded  

--build Y    

--create Y    

--grow N    

--incremental No options    

--misc N    

--manage Y add, remove, fail, set-faulty, run, stop, readonly, readwrite --manage may be omitted

--monitor No device    

Troubleshooting

Degraded array report

The system my detect a problem with the array and drop an underlying device.  This is normally reported by mail and by Nagios.

It can be confirmed and the excluded underlying device (partition) identified by cat /proc/mdstat

Defects in the physical device may be identified in kern.log and by smartctl -a /dev/sd<letter>

In case smartctl output shows extended tests are not being run (old build computers), update /etc/smarttd.conf from git and edit to suit.

In case no defects are found, there is no choice but to add the excluded underlying device back into the md device as documented under "Replacing an 
underlying device" above.

If defects are found, ensure the underlying device is not used again by zeroing its md superblock as documented under "Remove an underlying device (md 
device not in use)" above.

 In one case (bafi), during boot an array was assembled from a defective underlying device and the good underlying device excluded.

initrd fails to assemble md devices

When initrd is responsible for assembling the md devices, it needs to be rebuilt when the md devices (not their underlying devices) change, for example 
when an md is removed and a new one created with the same name.

If this has not been done and the md devices were required to boot, a busybox prompt is presented.   was not mdadm --assemble --scan
effective.  The md device had to be created by running mdadm --assemble /dev/md1 /dev/sda2 /dev/sdb2

When the system has been booted, the damage can be fixed by:



1.  
2.  

Updating /etc/mdadm/mdadm.conf to include current md UUIDs (updated lines can be generated by running  ).mdadm --detail --scan
Updating the current initrd by running  update-initramfs -u

LVM PVs on missing md devices

After fixing the missing md devices as above, the VGs and LVs can be enabled by running the busybox command  and then using its help to find the lvm
commands to do so (cut down versions of the GNU Linux equivalents).

Messages

auto-read-only

Seen in /proc/mdstat. Normal until after the first write to the device (can be forced).

/etc/mdadm/mdadm.conf defines no arrays

Populate /etc/mdadm/mdadm.conf as described above.

nvidia: wrong # of devices in RAID set "nvidia_gbbagfad"

This is normal on some motherboards with an Nvidia chipset with BIOS-provided RAID which, even when disabled, seems to lead to these messages. We 
have not found a way to disable them.

RebuildFinished event detected on md device *, component device mismatches found: * (on raid level 
*)

A non-zero number of mismatches is OK on RAID 1.

References
Overview: md man page
mdadm man page
mdadm.conf man page
kernel.org WIKI: https://raid.wiki.kernel.org
Wikiversity (nice summary): https://en.wikiversity.org/wiki/Linux/mdadm

https://raid.wiki.kernel.org/index.php/RAID_setup
https://en.wikiversity.org/wiki/Linux/mdadm

	Multiple devices (md, software RAID)

