
iSCSI

Introduction
Overview
Links
Planning
Setting up the server/target

Installation
Configuration

Setting up the client/initiator
Installation
Configuration
Testing
Using the iSCSI-provided block device

/etc/fstab (fsck not possible)
/etc/fstab-iscsi (fsck possible)

Normal operations
Issue investigation

How to identify which /dev/sd[a-z]+ are iSCSI devices
Error messages

iscsiadm: initiator reported error (19 - encountered non-retryable iSCSI login failure)

Introduction
This page summarises configuring iSCSI on Debian 6 and 7. Thanks to HowtoForge's excellent froUsing iSCSI On Debian Squeeze (Initiator And Target)
m which most of the information was learned.

Overview
iSCSI allows a server to provide a virtual block device over a network to a client. The virtual block device can then be treated like a real block device – for
example it can be partitioned and file systems created in the partitions.

In iSCSI terminology the server is a "target" and the client is an "initiator". On this page they are called server/target and client/initiator.

Links
HowtoForge's "Using iSCSI On Debian Squeeze (Initiator And Target)": http://www.howtoforge.com/using-iscsi-on-debian-squeeze-initiator-and-
target
Open-iSCSI: including a README: http://www.open-iscsi.org/ http://www.open-iscsi.org/docs/README
iSCSI Enterprise Target: http://iscsitarget.sourceforge.net/

Planning
You will need:

A user name and password (for the iSCSI configuration so a free choice. There may be a limit of 16 characters on the password).
A server/target computer:

root access.
The IP address. If there is more than one, the one that will be used by the client/initiator to access it.
A local block device to be made available to the initiator (client) via iSCSI. May be a file, a HDD (whole device or partition), an LVM
volume or a RAID device.

A client/initiator computer
root access.

Setting up the server/target

Installation

aptitude -y install iscsitarget iscsitarget-dkms

Configuration

Optionally backup the configuration files that will be changed: /etc/default/iscsitarget and /etc/iet/ietd.conf.

http://www.howtoforge.com/using-iscsi-on-debian-squeeze-initiator-and-target
https://en.wikipedia.org/wiki/Iscsi
http://www.howtoforge.com/using-iscsi-on-debian-squeeze-initiator-and-target
http://www.howtoforge.com/using-iscsi-on-debian-squeeze-initiator-and-target
http://www.open-iscsi.org/
http://www.open-iscsi.org/docs/README
http://iscsitarget.sourceforge.net/

sed -i 's/ISCSITARGET_ENABLE=false/ISCSITARGET_ENABLE=true/' /etc/default/iscsitarget

The next step sets up to serve a single LVM volume, /dev/vg0/lv0. Values that need to be changed are . The user and password values are need red
when configuring the client/initiator. Values that are arbitrary strings (so could be changed) are in .blue

user=someone
password=secret
local_device=/dev/vg0/lv0

oIFS=$IFS; array=($(hostname --long)); IFS=$oIFS
for ((i=${#array[*]};i>0;i--)); do backwards_fqdn+=.${array[i-1]}; done

(echo "Target iqn.$(date +%Y-%m)$backwards_fqdn: "storage.lun0
 echo " IncomingUser $user $password"
 echo " OutgoingUser"
 echo " Lun 0 Path=$local_device,Type=fileio"
 echo " Alias "LUN0
) > /etc/iet/ietd.conf

It can be useful to know the Target value just created when configuring the client/initiator. It can be displayed with

head -1 /etc/iet/ietd.conf

Further devices can be added by editing /etc/iet/ietd.conf, replicating and modifying the first stanza.

Setting up the client/initiator

Installation

aptitude -y install open-iscsi

Configuration

Optionally backup the configuration file that will be changed: /etc/iscsi/iscsid.conf.

sed -i 's/node.startup = manual/node.startup = automatic/' /etc/iscsi/iscsid.conf

In the next step, the iSCSI daemon is used to generate an initial configuration. Values that need to be changed are . Starting the daemon will generate red
error messages because there's no configuration yet.

target_ip=192.168.10.27
/etc/init.d/open-iscsi restart
iscsiadm -m discovery -t st -p $target_ip

This should create a sub-directory of /etc/iscsi/nodes/ with the same name as the Target created when configuring the server/target.

Within that sub-directory there should be a further sub-directory with name beginning with the server/target's IP address.

Note: if the server/target has two IP address (accessible by the client/initiator?) there will be two such sub-sub-directories. It may be possible to configure
a client/initiator to work this way but initial explorations did not identify how to do so. In this case, delete the sub-sub-directory for the IP address you do
not want to use.

In the next step, the user name and password are added to the configuration.

Change to the new /etc/iscsi/nodes/<target>/<IP address ...> directory. In the commands below, the sed command should be on a single line.

user=someone
password=secret

 -i "s/^node.session.auth.authmethod = None$/node.session.auth.authmethod = CHAP\nnode.session.auth.username = sed
$user\nnode.session.auth.password = $password/" default

Testing

/etc/init.d/open-iscsi restart

The output should include:

Login to [iface: default, target: <target>, portal: <ip address>,<port>]: successful

and a new /dev/sd[a-z]+ device file should have appeared.

Using the iSCSI-provided block device

The new /dev/sd[a-z]+ block device can be configured as desired.

If it is configured with file system(s) that should be mounted at boot there are two solutions dpending on whether the file systems should be fscked ...

/etc/fstab (fsck not possible)

/etc/fstab is used in the usual way with some special considerations:

LABEL or UUID must be used in case the /dev/sd[a-z]+ name assigned by udev changes from boot to boot.
The options must include _netdev. This ensures that mounting is deferred until the networking daemons (including open-iscsi) are running.
The sixth field (fs_passno) must be set to 0. This disables fsck when fstab is processed, necessary because the devices are not created until
later, when the open-iscsi boot script runs.

/etc/fstab-iscsi (fsck possible)

Create /etc/fstab-iscsi, based on this sample. The UUID can be found using the blkid command while the iSCSI-backed device is present:

This is the configuration file for /etc/init.d/mountscsi.sh

This file follows the same format as /etc/fstab.
First column: it is strongly recommended that UIDs or LABELs are used.
dump column: values may be omitted; if they are present they are ignored.
pass column: 0 disables fsck; any other value (conventionally 1) enables it.

<special> <mount point> <type> <options> <dump> <pass>
UUID=ff17c31e-eaff-4b49-b5f9-39ec81892e70 /mnt/hd/iSCSI jfs defaults 1

Install by creating the file with read and execute permission for root and writeable only by root (sorry about the formatting; /etc/init.d/mountscsi.sh
apparently I can't drive Confluence WIKI)

#! /bin/bash
BEGIN INIT INFO
Provides: mountiscsi
Required-Start: open-iscsi
Required-Stop:
Default-Start: S
Default-Stop:
Short-Description: Mounts file systems based on iSCSI-backed devices
Description: Mounts file systems based on iSCSI-backed devices.
As far as practicable, does with /etc/fstab-iscsi what
mountall.sh does with /etc/fstab.
In this version only ext* and JFS file systems are
supported with fsck before mount.
END INIT INFO

Author: Charles Atkinson <c@charlesmatkinson.org>

. /lib/init/vars.sh

. /lib/lsb/init-functions
regex='^#|^$'
shopt -s extglob

do_start () {
 log_begin_msg "Mounting iscsi-backed filesystems"$'\n'

 my_fstab=/etc/fstab-iscsi
 [[-r $my_fstab]] || { log_failure_msg "Cannot read $my_fstab" exit 1; }

 # For each line of my fstab
 mount_fail=0
 line_n=0
 while read -r special mountpoint type options dump pass spurious
 do
 ((line_n++))
 [[$special =~ $regex]] && continue
 [[$pass = '']] && pass=$dump
 if [[$spurious != '']]; then
 log_warning_msg "Spurious data on line $line_n of $my_fstab: $spurious"
 continue
 fi

 # Normalise the special value
 if [[$special =~ ^LABEL= || $special =~ ^UUID=]]; then
 buf=$(findfs "$special" 2>&1)
 if (($?>0)); then
 log_warning_msg "Cannot find the file system corresponding to '$special'"
 continue
 fi
 special_norm=$buf
 elif [[$special =~ ^/dev/]]; then
 buf=$(readlink --canonicalize -- "$special" 2>&1)
 if (($?>0)); then
 log_warning_msg "Problems running readlink for $special: $buf"
 continue
 fi
 special_norm=$buf
 else
 log_warning_msg "Invalid special on $my_fstab, line $line_n: $special"
 continue
 fi
 #echo "DEBUG: special:$special, mountpoint:$mountpoint,type:$type,options:$options, pass:$pass" >&2

 # Check for existing mounts
 mounted_flag=0
 while read -r pm_fs_spec pm_mountpoint _
 do
 if [[$pm_fs_spec = $special_norm]]; then
 mounted_flag=1
 log_warning_msg "$special_norm is already mounted on $pm_mountpoint"
 fi
 done < <(cat /proc/mounts)

 # Run file system check if possible and indicated
 if ((mounted_flag==0)); then
 fsck_flag=0
 case $type in
 ext*)
 tune2fs_out=$(tune2fs -l "$special_norm" 2>&1)
 if (($?>0)); then
 log_warning_msg "Can't list $special_norm file system parameters: $tune2fs_out"
 continue
 fi

 buf=${tune2fs_out##*Filesystem state:*()}
 filesystem_state=${buf%%$'\n'*}
 [[$filesystem_state != clean]] && fsck_flag=1
 #echo "DEBUG: filesystem_state:$filesystem_state" >&2

 buf=${tune2fs_out##*Maximum mount count:*()}
 max_mount_count=${buf%%$'\n'*}

 buf=${tune2fs_out##*Mount count:*()}
 mount_count=${buf%%$'\n'*}
 ((mount_count>max_mount_count)) && fsck_flag=1
 #echo "DEBUG: max_mount_count:$max_mount_count, mount_count:$mount_count" >&2

 buf=${tune2fs_out##*Check interval:*()}
 check_interval=${buf%% *}
 #echo "DEBUG: check_interval:$check_interval" >&2
 if ((check_interval>0)); then
 buf=${tune2fs_out##*Last checked:*()}
 last_checked=${buf%%$'\n'*}
 #echo "DEBUG: last_checked:$last_checked" >&2
 last_checked_secs=$(date "--date=$last_checked" +%s)
 now=$(date +%s)
 #echo "DEBUG: last_checked_secs:$last_checked_secs, now:$now" >&2
 (((now-last_checked_secs)>check_interval)) && fsck_flag=1
 fi
 ;;
 jfs)
 jfs_tune_out=$(jfs_tune -l "$special_norm")
 if (($?>0)); then

 log_warning_msg "Can't list file system parameters: $jfs_tune_out"
 continue
 fi

 buf=${jfs_tune_out##*JFS state:*([[:space:]])}
 jfs_state=${buf%%$'\n'*}
 #echo "DEBUG: jfs_state:$jfs_state" >&2
 [[$jfs_state != clean]] && fsck_flag=1
 ;;
 esac

 if ((fsck_flag==1)); then
 # fsck option -p is OK for fsck.ext[234] and for jfs_fsck`
 fsck -Tp "$special_norm"
 fi
 fi

 # Mount
 mount -t $type -o $options $special $mountpoint || mount_fail=1

 done < <(cat "$my_fstab")

 if ((mount_fail==0)); then
 exit 0
 else
 exit 1
 fi
}

case "$1" in
 start)
 do_start
 ;;
 restart|reload|force-reload)
 echo "Error: argument '$1' not supported" >&2
 exit 3
 ;;
 stop|"")
 # No-op
 ;;
 *)
 echo "Usage: mountiscsi.sh start" >&2
 exit 3
 ;;
esac

... and creating the required symlinks:

update-rc.d mountiscsi.sh defaults

That will generate two "do not match LSB Default" warnings which can be ignored.

Normal operations
In normal operations the client/initiator should be shut down before the server/target. Doing otherwise will result in a delayed shutdown by the client
/initiator.

Issue investigation

How to identify which /dev/sd[a-z]+ are iSCSI devices

The easiest way is to list /dev/disk/by-path/:

ls -l /dev/disk/by-path/ | grep 'ip-.*iqn\.'

If lshw is installed, more information is available by

lshw -class disk -class storage

hdparm doesn't work on iSCSI devices. When smartctl was tried there was a server/target kernel abort task for iSCSI target.

Error messages

iscsiadm: initiator reported error (19 - encountered non-retryable iSCSI login failure)

As the messages suggest, an authentication failure. Check user name and password consistency between server/target and client/initiator.

	iSCSI

