Impact of space usage on file system performance

® [ntroduction
® |[nitial results
® The test script

Introduction

This page is about testing the effect of file system usage on performance. This project was inspired by Linux Questions thread "How is the minimum file
system free space decided?".

Common advice is to limit file system usage to ~75 or ~80%. l|s there any test data behind that recommendation? The recommendation is old, dating
from when a 1 GB file system was huge; is this limit still applicable now 3 TB HDDs are commodity items?

I could not find any such test data. The nearest was file system tests -- usually comparing the performance of various file system types or various
hardware platforms in simulated "real world" scenarios -- but none were found that focussed on the effects of file system space usage.

There may be non-performance reasons for keeping 20% or more free space on a file system. As acid_kewpie pointed out in the Linux Questions thread,
free space is useful to accommodate unexpected data growth.

Initial results

06-Aug-2013 filesystem_freespace_test results: 15 GB ext4 on SATA 6 port

The attached .tgz has the test script log, the test report, gnuplot scripts and screen shots of the gnuplots. The test report includes some figures which are
not plotted including the normalised standard deviation for each set of four tests.

After unpacking, the plots may be generated using this bash command:
for i in {0..9}; do gnuplot --persist 06-Aug-2013\ @9\: 26.*. gnupl ot _script.$i; done
The results do not tell a clear story. Of the ten plots:

® Three show the conventional result of task times getting longer as file system usage increases but the effect starts around 50 to 60%, not the
conventional 75 to 80%. All three tests concern 10,000 directories (creating them, finding them and finding and removing them).

® Five show task times staying broadly similar throughout the test, with file system usage changing from 30 to 98%. All five show the test task
taking longer during roughly 60 to 80% usage and returning to pre-60% times until the end of the test at 98% usage. These five tests concern
either 10,000 directories (creating them, finding them and finding and removing them) or a 0.5 GiB file (reading or creating it).

® The remaining two plots show test times more or less consistent from 30 to 80% file system usage and then reducing by more than 50% from 80
to 98% usage.

The test script
https://bitbucket.org/charles_atkinson/public/commits/3366a2f75ef654d020c7fcdcf118b745ch8a2983

From the script's header comment, describing its purpose and actions:

* Tests performance of file systemat increasing |evels of space usage.
Not es:
1. "Space usage" is what df lists as Use%
2. Use%is "used/ (used+free)", not the intuitively obvious "used/size".
* Tests the performance of the underlying device, regardless of the file
system (hdparm -tT).
This is intended to give a baseline read-fromdevice figure, bypassing
the Linux file systemcache for conparison with later read tests.
* Wites files until usage exceeds a configurable threshold by not nore
than 1%
This is intended to sinulate typical usage.
Not es:

1. The files are filled with zeroes and have sizes randonmy chosen

http://www.linuxquestions.org/questions/linux-general-1/how-is-the-minimum-file-system-free-space-decided-4175467691/
http://www.linuxquestions.org/questions/linux-general-1/how-is-the-minimum-file-system-free-space-decided-4175467691/
https://wiki.bluelightav.org/download/attachments/21496760/06-Aug-2013.filesystem_freespace_test.tgz?version=1&modificationDate=1375787065000&api=v2
https://bitbucket.org/charles_atkinson/public/commits/3366a2f75ef654d020c7fcdcf118b745cb8a2983

froma configurabl e range.
2. The random si ze choice is weighted to create nore snaller files than
I arger ones, using a e”(k*(x-1)) function where k is a configurable
constant and x is a random nunber between 0 and 1.
Thanks to Kaushik for the weighting function.
* For every ten files created:
1. The file systenis and device's buffers are flushed (hdparm-f -F).
2. Afile chosen at randomis deleted.
3. The file systemis and device's buffers are flushed again.
This is intended to sinmulate typical usage and to produce fragnentation.
* When the usage exceeds the configurable threshold, timed performance

tests are run, as initialised in the initialise function, and

test results are witten to the report file. The report file is intended

for use by gnuplot. Data is subsequently parsed out of its comment |ines

by the write_gnuplot_scripts function.

* When the tests are conplete increnent the file systemusage by a
configurabl e percentage unless the configurable maxi mum percentage woul d
be exeeded. |If the usage is increnented, repeat the tests.

* Wite a gnuplot script file for each test

The script attempts to run each test under identical conditions, avoiding buffering effects. Before each test is run this function is run:

Nanme: flush_buffers
Purpose: flushes the OS file systembuffer and, if the HDD inplenents it,
the HDD's wite cache buffer

function flush_buffers {
#fct "${FUNCNAME[O] }" 'started
I ocal buf

((EUID =0)) && return # Need to be root to flush buffers

Sync and flush the buffer cache
#
Use hdparm -f rather than bl ockdev --flushbufs because it runs the sane
flushing systemcall plus five others.

buf =$(hdparm -f "$hdd_dev" 2>&1)

rc=$?

((rc>0)) && nsg E "Unable to flush the buffer cache: $buf"

Free cached dentries and inodes

Required in case the above keeps a copy in menory which reads coul d use.
Normal | y preceded by calling sync but hdparm-f calls sync
Ref er ences:
* https://ww. kernel . or g/ doc/ Docunent ati on/ sysct|/vm t xt
* http://catalin-festila.blogspot.in/2011/06/ nyth-of-dropcaches. htni
cho 2 > /proc/sys/vm drop_caches

O FHF B HHHHH

Flush the on-drive wite cache buffer

#
buf =$(hdparm - F "$hdd_dev" 2>&1)
rc=$?

((rc>0)) && nsg E "Unable to flush the on-drive wite cache buffer: $buf"
#msg D "${ FUNCNAME[0] }: Key /proc/nem nfo values: $(grep -E '“Cached:|~Dirty:"

#fct "${ FUNCNAVE[O] }* ' returning'
} # end of function flush_buffers

/ proc/ memi nfo)"

https://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://catalin-festila.blogspot.in/2011/06/myth-of-dropcaches.html

st race shows that hdparm - f runs sync(), fsync(3), fdatasync(3), sync(), ioctl (3, BLKFLSBUF, 0) and finally sync()again. Despi
te that and — more importantly for read tests —echo 2 > /proc/ sys/vni dr op_caches, there still appear to be buffering effects in the "Read 0.5 GiB
file" test. Here's an illustrative line from the test log:

Raw results: 4.241 0.133 0.109 0.308. Result (mean): 1.2. Standard deviation of normalised results: 1.5

	Impact of space usage on file system performance

